理化学研究所 中川RNA生物学研究室 准主任研究員
▶ プロフィールはこちら
This volume focuses on cytological, biochemical, and molecular biological methods to identify and examine the function of each nuclear body, with an emphasis on the analysis of long non-coding RNAs. Chapters focus on exploring recent studies that reveal how certain long non protein-coding RNAs accumulate in specific nuclear bodies and regulate the function of the bodies by serving as architectural components or controlling the dynamics of associating protein components. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.
Authoritative and practical, Nuclear Bodies and Noncoding RNAs: Methods and Protocols serves as a guideline for further study into the sophisticated regulation of gene expression.
Neat1 is a non-protein-coding RNA that serves as an architectural component of the nuclear bodies known as paraspeckles. Although cell-based studies indicate that Neat1 is a crucial regulator of gene expression, its physiological relevance remains unclear. Here, we find that Neat1 knockout (KO) mice stochastically fail to become pregnant despite normal ovulation. Unilateral transplantation of wild-type ovaries or the administration of progesterone partially rescued the phenotype, suggesting that corpus luteum dysfunction and concomitant low progesterone were the primary causes of the decreased fertility. In contrast to the faint expression observed in most of the adult tissues, Neat1 was highly expressed in the corpus luteum, and the formation of luteal tissue was severely impaired in nearly half of the Neat1 KO mice. These observations suggest that Neat1 is essential for the formation of the corpus luteum and for the subsequent establishment of pregnancy under a suboptimal condition that has not yet been identified.