泊 幸秀 (TOMARI, Yukihide)

泊 幸秀 (TOMARI, Yukihide)

東京大学 分子細胞生物学研究所 教授
▶ プロフィールはこちら

MicroRNAs (miRNAs) are loaded into the Argonaute subfamily of proteins (AGO) to form an effector complex that silences target genes. Empty but not miRNA-loaded AGO is selectively degraded across species. However, the mechanism and biological significance of selective AGO degradation remain unclear. We discovered a RING-type E3 ubiquitin ligase we named Iruka (Iru), which selectively ubiquitinates the empty form of Drosophila Ago1 to trigger its degradation. Iru preferentially binds empty Ago1 and ubiquitinates Lys514 in the L2 linker, which is predicted to be inaccessible in the miRNA-loaded state. Depletion of Iru results in global impairment of miRNA-mediated silencing of target genes and in the accumulation of aberrant Ago1 that is dysfunctional for canonical protein-protein interactions and miRNA loading. Our findings reveal a sophisticated mechanism for the selective degradation of empty AGO that underlies a quality control process to ensure AGO function.

追加情報

Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form.

追加情報

It remains unclear how post-transcriptional gene silencing (PTGS) in plants discriminates aberrant RNAs from canonical messenger RNAs (mRNAs). The key step of plant PTGS is the conversion of aberrant RNAs into double-stranded RNAs by RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Here, we show that RDR6 itself selects aberrant poly(A)-less mRNAs over canonical polyadenylated mRNAs as templates at the initiation step of complementary strand synthesis. This mechanism can be viewed as an innate safeguard against 'self-attack' by PTGS.

追加情報

PIWI-interacting RNAs (piRNAs) play a crucial role in transposon silencing in animal germ cells. In piRNA biogenesis, single-stranded piRNA intermediates are loaded into PIWI-clade proteins and cleaved by Zucchini/MitoPLD, yielding precursor piRNAs (pre-piRNAs). Pre-piRNAs that are longer than the mature piRNA length are then trimmed at their 3′ ends. Although recent studies implicated the Tudor domain protein Papi/Tdrkh in pre-piRNA trimming, the identity of Trimmer and its relationship with Papi/Tdrkh remain unknown. Here, we identified PNLDC1, an uncharacterized 3′-5′ exonuclease, as Trimmer in silkworms. Trimmer is enriched in the mitochondrial fraction and binds to Papi/Tdrkh. Depletion of Trimmer and Papi/Tdrkh additively inhibits trimming, causing accumulation of ∼35–40-nt pre-piRNAs that are impaired for target cleavage and prone to degradation. Our results highlight the cooperative action of Trimmer and Papi/Tdrkh in piRNA maturation.

追加情報

Small interfering RNAs (siRNAs) direct cleavage of complementary target RNAs via an RNA-induced silencing complex (RISC) that contains Argonatute2 protein at its core. However, what happens after target cleavage remains unclear. Here we analyzed the cleavage reaction by Drosophila Argonaute2-RISC using single-molecule imaging and revealed a series of intermediate states in target recognition, cleavage, and product release. Our data suggest that, after cleavage, RISC generally releases the 5' cleavage fragment from the guide 3' supplementary region first and then the 3' fragment from the seed region, highlighting the reinforcement of the seed pairing in RISC. However, this order can be reversed by extreme stabilization of the 3' supplementary region or mismatches in the seed region. Therefore, the release order of the two cleavage fragments is influenced by the stability in each region, in contrast to the unidirectional base pairing propagation from the seed to the 3' supplementary region upon target recognition.

追加情報

Small RNAs such as small interfering RNAs (siRNAs) and microRNAs (miRNAs) silence the expression of their complementary target messenger RNAs via the formation of effector RNA-induced silencing complexes (RISCs), which contain Argonaute (Ago) family proteins at their core. Although loading of siRNA duplexes into Drosophila Ago2 requires the Dicer-2-R2D2 heterodimer and the Hsc70/Hsp90 (Hsp90 also known as Hsp83) chaperone machinery, the details of RISC assembly remain unclear. Here we reconstitute RISC assembly using only Ago2, Dicer-2, R2D2, Hsc70, Hsp90, Hop, Droj2 (an Hsp40 homologue) and p23. By following the assembly of single RISC molecules, we find that, in the absence of the chaperone machinery, an siRNA bound to Dicer-2-R2D2 associates with Ago2 only transiently. The chaperone machinery extends the dwell time of the Dicer-2-R2D2-siRNA complex on Ago2, in a manner dependent on recognition of the 5'-phosphate on the siRNA guide strand. We propose that the chaperone machinery supports a productive state of Ago2, allowing it to load siRNA duplexes from Dicer-2-R2D2 and thereby assemble RISC.

追加情報

PIWI-interacting RNAs (piRNAs) silence transposons in animal germ cells. PIWI proteins bind and amplify piRNAs via the "Ping-Pong" pathway. Because PIWI proteins cleave RNAs between target nucleotides t10 and t11-the nucleotides paired to piRNA guide positions g10 and g11-the first ten nucleotides of piRNAs participating in the Ping-Pong amplification cycle are complementary. Drosophila piRNAs bound to the PIWI protein Aubergine typically begin with uridine (1U), while piRNAs bound to Argonaute3, which are produced by Ping-Pong amplification, often have adenine at position 10 (10A). The Ping-Pong model proposes that the 10A is a consequence of 1U. We find that 10A is not caused by 1U. Instead, fly Aubergine as well as its homologs, Siwi in silkmoth and MILI in mice, have an intrinsic preference for adenine at the t1 position of their target RNAs; during Ping-Pong amplification, this t1A subsequently becomes the g10A of a piRNA bound to Argonaute3.

追加情報

miRNAs silence their complementary target mRNAs by translational repression as well as by poly(A) shortening and mRNA decay. In Drosophila, miRNAs are typically incorporated into Argonaute1 (Ago1) to form the effector complex called RNA-induced silencing complex (RISC). Ago1-RISC associates with a scaffold protein GW182, which recruits additional silencing factors. We have previously shown that miRNAs repress translation initiation by blocking formation of the 48S and 80S ribosomal complexes. However, it remains unclear how ribosome recruitment is impeded. Here, we examined the assembly of translation initiation factors on the target mRNA under repression. We show that Ago1-RISC induces dissociation of eIF4A, a DEAD-box RNA helicase, from the target mRNA without affecting 5' cap recognition by eIF4E in a manner independent of GW182. In contrast, direct tethering of GW182 promotes dissociation of both eIF4E and eIF4A. We propose that miRNAs act to block the assembly of the eIF4F complex during translation initiation.

追加情報

Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.

追加情報

サイト内検索