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The word ' prion'  was first used to describe a new infectious 

agent hypothesized to cause mammalian transmissible 

encephalopathies (TSEs) by a protein only mechanism.  There 

are several proteins in Saccharyomyces cerevisiae, which, 

similar to mammalian prions, are able to undergo an 

autocatalytic conformational arrangement.  Mammalian prions 

and these ' yeast prions'  share many 

important characteristics (for a review, see 

Table 1) including an N-terminally located 

' prion'  domain enabling a structural 

rearrangement of the protein into insoluble 

oligomers.  These insoluble oligomers are 

thought to induce the autocatalysis of 

soluble monomers into the insoluble state, 

resulting in a growing amyloid fiber that is rich in -sheet

content and resistant to proteolysis.  Yeast prions also exhibit 

' prion strains'  and a ' species barrier' , which are phenomena 

previously described for mammalian prions.  Of the yeast 

prions, the most studied is the Sup35 protein of S. cerevisiae,

which is a subunit (eRF3) of the eukaryotic polypeptide release 

factor and essential for accurate translation termination. The 

Sup35p N-terminal ' prion domain'  is similar to that of the 

mammalian prion as both are unstructured domains containing 

at least five oligopeptide repeats that are necessary for the 

efficient propagation of the prion state.  The N-terminal of 

Sup35p has the additional characteristic of being extremely rich 

in the polar residues glutamine and 

asparagine, which is reminiscent of 

polyglutamine repeat disease proteins (ie/ 

huntingtin, -synuclein) seen in mammals.  

Unlike mammalian prions, the ' prion'  state 

of Sup35p (termed [PSI +]) does not 

generally kill cells.  Rather, it reduces the 

fidelity of translation termination at the 

ribosome and thereby suppresses nonsense codons (Figure 1).

From August 25th to the 28th, yeast and mammalian prion 

researchers from around the world gathered amidst the beautiful 

setting of the Mayacamas Ranch in California' s Napa Valley for 

the 2nd International Yeast Prion Symposium.  Many new and 

important insights in yeast prion biology 

have been discovered in recent years.  New 

data now demonstrate how yeast prions arise 

spontaneously at low frequency and, once 

established, how they are stably maintained 

from cell generation to generation through 

the action of an unlikely partner, heat shock 

protein 104 (Hsp104p), a "protein 

disaggregase" (Figure 2).  Other major issues 

under investigation include the ' prion curing'  

action of millimolar concentrations of 

guanidium hydrochloride (GuHCl), molecular

dissection of the remarkable sequence 

characteristics of yeast prions, the existence 

of a ' species barrier'  amongst yeast prions, 

2nd International Yeast Prion Symposium
Mayacamas Ranch, California, USA

August 25th-28th, 2002

Colin Crist
Department of Basic Medical Sciences,
Institute of Medical Science

  University of Tokyo
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How [PSI +] arises spontaneously

and then propagated faithfully 

is an interesting enigma of 

prion biology

Table 1.  Similar and divergent features between mammalian PrP and yeast [PSI+].
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and the biological role of ' prionization'  - an epigenetic means 

to provide phenotypic change.  Since many of this year' s 

presentations described new data about these interesting topics 

of yeast prion biology, the symposium proved to be a timely 

event to gather and discuss current research as well as future 

prospectives.  This year' s symposium was organized by 

Jonathan Weissmann (Department of Cellular and Molecular 

Pharmacology, University of California, San Francisco). Due to 

the relatively small number of participants in this meeting, the 

format for the symposium allowed for most of the participants 

to provide a 20-minute presentation, as well as providing time 

for informal discussion and activities.

[PSI +] arises spontaneously in S. cerevisiae at a frequency of 

about 10-6. How [PSI +] arises spontaneously and then 

propagated faithfully is an interesting enigma of prion biology.  

Susan Liebman (Department of Molecular Genetics and Cell 

Biology, University of Chicago, Illinois) discussed ongoing 

research in her laboratory on the mechanism of de novo

generation of [PSI +].  Work in Dr. Liebman' s laboratory has 

been instrumental to discover that the de novo generation of 

[PSI +] requires another pre-existing prion called [PIN +] for 

' [PSI +] inducer'  and that [PIN +] is the ' prionized'  version of 

Rnq1p protein (function unknown).  [PIN +] shares many 

characteristics with other yeast prions, most notably is the 

existence of an N-terminally located ' prion domain'  rich in Gln 

and Asn residues.  Currently, there are two models for [PIN +]

interaction.  First, in a ' seeding model' , [PIN +] aggregates may 

' seed'  the conversion of Sup35p to [PSI +] through a direct 

interaction. This model was further supported by work in Susan 

Uptain' s laboratory (Department of Molecular Genetics and 

Cell Biology, University of Chicago, Illinois) showing that, in

vitro, Rnq1p fiber preparations could ' seed'  the formation of 

fibers from purified Sup35p prion domains.  The second 

' titration model'  suggests that preexisting [PIN +] aggregates 

may ' titrate'  available chaperones, allowing Sup35p to adopt 

the alternate conformer and establish [PSI +]. By sharing current 

data and discussing these possibilities, it was generally accepted 

that available evidence points to the first model, although the 

second model has not been ruled out.

Once [PSI +] and other yeast prions are established, how they 

are faithfully propagated is also a key question in prion biology. 

This topic was introduced in detail by Brian Cox (Department 

of Biosciences, University of Kent, England), who discovered 

[PSI +] as an aberrant genetic element inherited in a non-

Mendelian manner, over 30 years ago.  Dr. Cox discussed the 

biological importance of ' seeding'  in yeast prion propagation. 

Once the [PSI +] phenotype is established in a cell, the growing 

aggregate may act to induce soluble Sup35p to adopt the [PSI +]

conformer and join the growing aggregate. The process is rapid, 

with little soluble Sup35p detectable in [PSI +] cells.  Thus, 

large growing aggregates need to be ' disaggregated'  to produce 

' seeds'  for rapidly dividing yeast cells. Ongoing work in Dr. 

Cox' s lab has established the necessity for ' seeding'  prions for 

future cell divisions, that ' seeding'  activity is likely caused by 

the activity of Hsp104p and that GuHCl is a potent inactivator 

of Hsp104p activity (Figure 2). By determining the number of 

generations it takes to remove all [PSI +] cells from a culture 

after the addition of GuHCl (ie/ inactivation of Hsp104p), Dr. 

Cox' s group has established that there are, on average, 64 

functional seeds per cell.  These revelations were supported by 

Figure 2. Hsp104p is essential to propagate [PSI +]. Active Hsp104p 
acts as a 'crowbar' on the growing [PSI +] aggregate to create 
[PSI +] 'seeds' for rapidly dividing yeast cells.  When Hsp104p is 
inactivated by mutation or by the addition of millimolar 
concentrations of guanidine hydrochloride, no seeding activity 
occurs and the growing aggregate is simply diluted out of the 
culture.

Figure 1. In the [psi -] state, Sup35p of S. cerevisiae is soluble
and binds to Sup45p to form the translation termination 
complex eRF3, essential for accurate translation termination 
when the ribosome reaches a stop codon.  In the [PSI +] state, 
soluble Sup35p has been converted to an insoluble aggregate 
causing ribosomes to fail to stop at the stop codon.  It has 
been suggested that phenotypic diversity may be mediated by 
the [PSI +] suppression of nonsense mutations.



additional presentations.  Frederique Ness of Mick Tuite' s lab 

(Department of Biosciences, University of Kent, England) 

presented data showing that the addition of GuHCl prevented 

the generation of a prion ' seed'  but not prion protein 

aggregation.  These findings suggest a two-cycle model for 

' prionization' : 1) a GuHCl-sensitive replication of prion seeds 

followed by 2) a GuHCl-insensitive process to convert seeds to 

larger aggregates. In addition, Vitaly Kushnirov (Institute of 

Cardiology Research, Moscow, Russia) presented creative 

differential centrifugation-native PAGE experiments characterizing

the components of Sup35p aggregates and 

providing further evidence that Sup35p 

prion aggregates are composed of smaller 

Sup35p oligomers fragmented by Hsp104p. 

Although it has been known that Hsp104p 

activity is important for the stability of 

yeast prions for many years, the true action 

of Hsp104p remained a mystery until 

recently.  Thus, it is timely to find that many 

different experimental evidence suggests 

that Hsp104p provides a crucial ' seeding'  

role for [PSI +] propagation.

The prion forming domain of yeast prions have several 

interesting characteristics including it' s extremely high content 

in the polar residues glutamine and asparagine, and the 

existence of tandem oligopeptide repeats, analogous to 

mammalian polyglutamine diseases and prion (PrP) protein, 

respectively. Much work has been emphasized on the molecular 

dissection of this domain.  Yoshikazu Nakamura (Department of 

Basic Medical Science, Institute of Medical Science, University 

of Tokyo) discussed leading research in his laboratory on 

defining the sequence that provides a species barrier in yeast 

prion biology.  Work in Dr. Nakamura' s laboratory has been 

instrumental to show that although Sup35p prion function is 

conserved among distantly related yeasts, a ' species barrier'  

inhibits prion induction between Sup35ps from different yeast 

species, which is a further property shared by mammalian 

prions.  However, two species of yeast show susceptibility or 

cross-transmissibility beyond the species barrier and thus serve 

as useful tools for investigation of the species barrier.  To 

identify Sup35p' s molecular determinant of 

the ' species barrier' , work in Dr. 

Nakamura' s laboratory has used extensive 

chimeric studies between the prion domains 

of S. cerevisiae and Kluyveromyces lactis

showing that the species barrier lies in a 

short segment of Gln/Asn rich residues at 

the N-terminus, defined by residues 1 to 41. 

Moleculer dissection of the prion domain 

has been further emphasized by ongoing 

studies in Mick Tuite' s lab that have shown 

the importance of the oligopeptide repeat domains in the 

stability of [PSI +]. To identify critical residues for the 

maintenance of [PSI +], Dr. Tuite' s laboratory has recently 

investigated polymorphisms in the Sup35p prion domain of 21 

different laboratory and industrial strains.  These polymorphisms

were further characterized by site directed mutagenesis 

successfully showing that, for example, while residues in the 

internal oligopeptide repeats (ie/ 3rd repeat) can be changed, the 

same changes are not tolerated in external oligopeptide repeats 

(ie/ 5rd repeat).  This could be a reflection of which oligopeptide 

What is the, if any, biological 

role of 'prionization' in yeast? 

The [PSI+] form of Sup35p 

provides a metastable and 

epigenetic means to inactivate 

the role of the C-terminal 

domain in translation termination

The 2nd International Yeast Prion Symposium was held amidst the intimate setting of Napa Valley's wine country.  Yeast prion 
researchers from around the world gathered at the Mayacamas Ranch, Napa Valley, California. (The author is kneeling on the 
grass, third person from the right).



repeats are essential for Sup35p-Sup35p protein interactions for 

[PSI +].

What is the, if any, biological role of ' prionization'  in yeast? 

The [PSI +] form of Sup35p provides a metastable and 

epigenetic means to inactivate the role of the C-terminal domain 

in translation termination, and this may be of particular interest 

to RNA biologists.  Many informative presentations addressed 

this issue.  Of particular interest was the work presented by 

Heather True, a talented young scientist in Susan Lindquist' s 

laboratory (Whitehead Institute, MIT, Massachusetts).  Dr. 

Lindquist is a pioneer in yeast prion biology, much of her work 

has demonstrated phenotypic diversity mediated by the [PSI +]

suppression of nonsense mutations.  Heather' s work has been 

instrumental to show that [PSI +] can convert previously neutral 

genes (ie/ inactivated by a nonsense mutation) to a non-neutral 

state and that this is a capacity for genetic variation. Heather' s 

work showed that in the presence of acetate as the sole carbon 

source, some strains that exhibit the [PSI +] phenotype were 

able to grow better than their [psi- ] (soluble Sup35p) 

counterparts.  Colony morphologies also changed in [PSI +] cells 

of some strains growing on acetate and this morphology change 

was reported to be due to the expression of previously silent 

flocculin genes activated by [PSI +].  This work is the first to 

describe [PSI +] as a facilitator of phenotypic diversity and 

perhaps evolutionary change.  Reed Wickner, (Department of 

Biochemistry and Genetics, National Institute of Health, 

Maryland) was the first to use genetic criteria to identify the 

non-Mendelian genetic determinants of [PSI +] and [URE3 ] as 

' prions'  in yeast.  Ongoing research in his laboratory includes 

the microarray analysis of gene expression changes caused by 

the prion form of Ure2p ([URE3 ]), a protein involved in the 

catabolism of nitrogen.  It is thought that a similar approach 

may be used to identify genes that are positively or negatively 

regulated in the presence of the ' prionized'  form of Sup35p and 

this may provide genomic insight into the biological role of 

[PSI +].

In addition to these and many other informative 

presentations, the beautiful setting of the Mayacamas ranch and 

the conference schedule provided ample opportunity for 

informal discussions and activities.  Participants of the 

conference could enjoy swimming, fishing, hiking and canoeing 

at the ranch.  However the highlight of the social activities may 

have been the winery tours when the rich, full-bodied flavours 

of Napa Valley' s wines were enjoyed amidst the beautiful 

surroundings of the vineyards. Many of the participants 

purchased bottles of wine to enjoy at the event' s final evening, a 

truly Californian BBQ followed by a midnight campfire at the 

Mayacamas ranch.

The final item on the agenda for this years meeting was a 

discussion about the next prion meeting. Over the last decade, 

the number of researchers entering this exciting field is growing 

vastly, and conversely, the number of identified yeast prions has 

grown while progress towards an ultimate proof of the prion 

hypothesis in yeast has accelerated rapidly.  Due to these 

factors, and the enormous success of this years meeting, it was 

decided to increase the frequency of this meeting from the 

current quadrennial event to a biennial event. The next 

International Yeast Prion Symposium will be held at a European 

location in August, 2004.

Colin Crist graduated with 
a BSc in Microbiology from
the University of British 
Columbia in Vancouver, 
Canada.  He obtained his 
MSc degree in Biochemistry
from the University of Tokyo,
under the supervision of 
Professor Yoshikazu 
Nakamura and he is 
currently continuing his 
research in Nakamura 
laboratory as a PhD student,
investigating the role of a 
unique oligopeptide repeat 
sequence in yeast prion 
biology.

Colin Crist
Department of Basic Medical 
Sciences, Institute of Medical 
Science
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Pioneers of yeast prion biology.  (From left to right: Mick Tuite, University of 
Kent; Susan Liebman, University of Chicago; Jonathan Weissman, University 
of California San Francisco; Brian Cox, University of Kent; and Yoshikazu 
Nakamura, University of Tokyo)
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RISC Dicer

in vivo

in vitro

eIF C Dicer
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eIF C siRNA

RISC

RISC/miRNP eIF C

PAZ-PIWI

RNA siRNA

miRNA RISC miRNP

RNA

Dicer RNA

x

RNA

PAZ Dicer



siRNA miRNA

mRNA

RNAi miRNA miRNA

siRNA miRNA Dicer

RISC/miRNP

miRNA

miRNA

miRNA

pri-miRNA -nt pre-miRNA

pre-miRNA miRNA
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'
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noncoding RNA

noncoding

RNA RNA

DNA

noncoding RNA

RNA

"RNome"



�
�
��

�
�
��

C.

elegans C. elegans

RNAi 

C. elegans

Caenorhabditis elegans

S.

Brenner

C. elegans
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C. elegans
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DNA Mb

C. elegans

,

C. elegans
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elegans

C. elegans
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,

C. elegans

J. Sulston

C. elegans

C. elegans

RNAi
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dsRNA RDE- dsRNA dsRNA
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dsRNA siRNA RDE- Dicer DRH- (dicer-related helicase) RDE-

siRNA RISC (RNA-induced silencing complex) mRNA
RdRP (RNA RNA ) mRNA
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RNAi
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RNAi (RNA interference) A.
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RNAi

RNAi

RNAi
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RNAi
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RNAi
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dsPKR

dsRNA

dsRNA RNA
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poly(I:C)

dsRNA CD

TLR
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RNA
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RNA
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Y Magoh Upf
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NMD(nonsense-mediated mRNA decay) mRNA

(premature termination codon PTC)

mRNA

NMD

NMD

NMD

NMD

NMD

NMD

NMD

splicing gene

rearrangement aberrant transcript

NMD
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gene
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gene rearrangement PTC
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B

RNA editing PTC

splicing

NMD
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aminoacylation

aminoacyl

tRNA

Mangiarotti Iborra

mRNA

ribosome

mRNA ribosome
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tRNA splicing endonuclease
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tRNA splicing
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hnRNP A (heterogeneous nuclear ribonucleoprotein A )
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RNA

ATP

RNA
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in vivo

RNA
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RNA

RNA
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RNA
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RNA

RNA
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(J. Mol. Biol., ,
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(Proc. Natl. Acad. Sci. USA,
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mRNA
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ts mRNA

mRNA
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in situ hybiridization mRNA (poly A+ RNA)
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mRNA in situ hybridization

rDNA in situ hybridi-zation
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(Tani et al., Mol. Biol. Cell, 
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mtDNA I ND , ND , ND , ND , ND L, ND , ND ; Cytb;

IV CO , CO , CO ; V ATP , ATP rRNA SrRNA SrRNA
tRNA tRNALys K ND
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RNA RNA

RNA
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Retroviruses, May 20 - 25, 2003 
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Neurobiology of Drosophila, October 1 - 5, 2003
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